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by substitution of variables. Hence the two theorems follow.

Derivative theorem The Fourier transform of p/(z) is 2xsP,(s).
Hence the Fourier transform of p’(x) is 12wsP(s).

Power theorem Since no meaning has been assigned to the product of
two generalized functions, the best theorem that can be proved is

[2 P@Fs) ds = [ °, p@F(~2) da,

where F(z) is a particularly well-behaved function and p(z) is a general-
ized function. The theorem follows from the fact that

lim [ :o P,(s)F (s) ds = lim / _.»w f _: F(s)p(x)e—izms= dx ds

—0 ™0

= lim f_ww p()F(—x) de.
™0

Summary of theorems

The theorems discussed in the preceding pages are collected for reference
in Table 6.1. -

Table 6.1 Theorems for the Fourier transform

Theorem f@) F(s)
Similarity f(az) 1p (f)
o] \a
Addition f(z) + g(z) F(s) 4+ G(s)
Shift flx — a) e~i2masp ()
Modulation f(z) cos wx 3F (3 - _co_) + 3F (3 + 2)
2w 2w
Convolution f(x) * g(x) F(s)G(s)
Autocorrelation f(@) * f*(—x) |F(s)]?
Dertvative f(x) 12msF(s)

Derivative of convolution C%[f(:c) x g(@)] = f'@) * g(&) = f(@) * ¢'(x)
Rayleigh f " @) de = f " R ds

Power / " f@)et@) de = [ " Fs)6%(s) ds

(f and g real) f 7 f@)g(—a) dz = [ " F()G(s) ds




The dissociation into odd and even parts changes with changing origin
of z, some functions such as cos z being convertible from fully even to fully
odd by a shift of origin.

Significance of oddness and evenness

Let
f(x) = E(z) + O(),

where E and O are in general complex. Then the Fourier transform of
f(x) reduces to

2 /Ow E(x) cos (2rxs) de — 2 fow O(z) sin (2rxs) dzx.

It follows that if a function is even, its transform is even, and if it is odd,
its transform is odd. Full results are

Real and even Real and even

Real and odd Imaginary and odd
Imaginary and even Imaginary and even
Complex and even Complex and even
Complex and odd Complex and odd

Real and asymmetrical Complex and asymmetrical
Imaginary and asymmetrical Complex and asymmetrical
Real even plus imaginary odd Real

Real odd plus imaginary even Imaginary

Even Even

Odd 0dd

These properties are summarized in the following diagram:

f(z) = o(x) + e(x) = Re o(z) + ¢ Im o(z) + Re e(x) + ¢ Im e(x)

F(s) = 0(s) + E(s) = Re O(s) + 1 Im O(s) + Re E(s) + 7+ Im E(s).

Figure 2.5, which records the phenomena in another way, is also valua-
ble for revealing at a glance the “relative sense of oddness”: when f(z) 1s
real and odd with a positive moment, the odd part of F(s) has 7 times a
negative moment; and when f(z) is real but not necessarily odd, we also
find opposite senses of oddness. However, inverting the procedure—
that is, going from F(s) to f(z), or taking f(x) to be imaginary—produces
the same sense of oddness.

Real even functions play a special part in this work because both they
and their transforms may easily be graphed. Imaginary odd, real odd,
and imaginary even functions are also important in this respect.

Another special kind of symmetry is possessed by a function f(z) whose
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%g even Imag even
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Fig. 2.5 Symmetry properties of a function and its Fourier transform.
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Sinusoidal functions
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Exponential functions

Pictorial dictionary of Fouwrier transforms
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Gaussian functions

Pictorial dictionary of Fourier transforms
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250 - TIME-DEPENDENT PERTURBATION (Chap. 10)

because of [10-21b] four times as high. At a later time 3t,, the curve is three
times narrower and nine times higher than the same curve at ¢ — ty. The area

under the curve—which measures the total excitation in levels other than the
kth—is thus increasing in proportion to ¢. The excitation “piles up” in those

J—— t=0 p————
— (qpap=1) ——
Wl —= —
VY] — —
w ——— —
L 5
(o) (cj,*:a;,,
(a) (b)
p— t=2t, — t=34
W — g =
woo o= ? Tz—"‘— Peak = (31,2
— (2t,) —/——
. -
(afmat,) (apmap,)
(c) (d)

Fig. 10.2. The time variation of the excitation of the proper vibrations

(eigenfunctions) caused by the constant perturbation, starting at t = 0.

The density of the horizontal lines indicates the degree of excitation of
the level or state.

levels nearest Wy, the effect being more pronounced the longer the perturbation
is allowed to continue.

The detailed picture of the excitation process is complicated, except for
those levels very near to W}, which show a steady growth of excitation with 2.
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Fig. 10.4. Sequential photographs of a bank of reed filters. At t — 0, a

constant-amplitude 180 cps signal is coupled equally to each
of the reeds.
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ABovT THE SINC FUNcTenN
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(Sec. 3) HARMONIC PERTURBATION - 253

resonance regions are getting narrower (as 1/¢) and more intense at their maxima
(as 12). Thus the total excitation of each resonance region grows in proportion
to t, the duration of the perturbation. (In these figures we assume, for con-

=1,
Ju— [Emn—— wh
JE— =0 _— —f kT hg
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— p— in-ﬁwo
~(amap)—>
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=21 é t=3t,
P — e —— ==
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Wk°.>—— o= ‘—*» wm—— ===z ——*»
w P 'hwo — % . ﬁwo
p— p— }[___
~(aka,,) — ~(ama,) —

(c) (d)
Fig. 10.3. The time variation of the excitation of the proper vibrations
caused by a harmonic perturbation, starting at t = 0. The density of the
horizontal lines indicates qualitatively the degree of excitation of the level
or state.

venience, that the matrix elements connecting k to all other states are the same.
Actually, of course, the matrix elements can, and do, exert a strong selective
effect over and above the basic resonance effects. The matrix elements
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